Stability of the Sp3-DNA complex is promoter-specific: Sp3 efficiently competes with Sp1 for binding to promoters containing multiple Sp-sites.
نویسندگان
چکیده
The transcription regulatory protein Sp3 shares more than 90% sequence homology with Sp1 in the DNA-binding domain and they bind to the same cognate DNA-element. However, the transcriptional activities of these two Sp-family factors are not equivalent. While Sp1 functions strictly as a transcriptional activator, Sp3 has been shown to be transcriptionally inactive for promoters containing multiple Sp-binding sites. In the present study, we show that the DNA-binding property of Sp3 is promoter dependent and is different from Sp1. The 116 kDa Sp3 polypeptide binds as a monomer to a single Sp-binding site but readily forms slower migrating complexes with adjacent Sp-binding sites. The slower migrating Sp3-DNA complexes are significantly more stable than monomeric Sp3-DNA complexes or multimeric Sp1-DNA complexes. As a consequence, Sp3 can efficiently compete with Sp1 for binding to regions containing multiple Sp sites. The transcription regulatory function of Sp3 is also significantly different from Sp1. Unlike Sp1, Sp3 does not synergistically activate transcription of promoters containing multiple Sp-binding sites. Therefore, although Sp3 is a transcription activator, Sp3 reduces Sp1-dependent transcription of promoters containing adjacent Sp-binding sites by competing with Sp1 for promoter occupancy and thereby blocking the synergistic transactivation function of Sp1. Taken together, this study provides a possible mechanism of the promoter-specific transcription repression function of Sp3.
منابع مشابه
Transcriptional regulation of the human DNA methyltransferase 3A and 3B genes by Sp3 and Sp1 zinc finger proteins.
The DNMT3A (DNA methyltransferase 3A) and DNMT3B genes encode putative de novo methyltransferases and show complex transcriptional regulation in the presence of three and two different promoters respectively. All promoters of DNMT3A and DNMT3B lack typical TATA sequences adjacent to their transcription start sites and contain several Sp1-binding sites. The importance of these Sp1-binding sites ...
متن کاملSp1 and Sp3 physically interact and co-operate with GABP for the activation of the utrophin promoter.
The utrophin gene codes for a large cytoskeletal protein closely related to dystrophin which, in the absence of dystrophin, can functionally substitute it. Utrophin is transcribed by two independently regulated promoters about 50 kb apart. The upstream promoter is TATA-less and contains a functional GABP binding site which, in muscle, restricts the promoter activity to post-synaptic nuclei. Tra...
متن کاملSp3 encodes multiple proteins that differ in their capacity to stimulate or repress transcription.
The product of the retinoblastoma (Rb) susceptibility gene ( RB-1 ) regulates expression of a variety of growth control genes via discrete promoter elements termed retinoblastoma control elements (RCEs). We have previously shown that RCEs are bound and regulated by a common set of ubiquitously expressed nuclear proteins of 115, 95 and 80 kDa, termed retinoblastoma control proteins (RCPs). We ha...
متن کاملRegulation of human CETP gene expression: role of SP1 and SP3 transcription factors at promoter sites -690, -629, and -37.
Cholesteryl ester transfer protein (CETP) is a key factor in plasma reverse cholesterol transport and is implicated in the pathophysiology of atherogenic dyslipidemia. Variations observed in plasma CETP mass and activity in both normolipidemic and dyslipidemic individuals may reflect differences in CETP gene expression. We evaluated the respective roles of the Sp1 and Sp3 transcription factors ...
متن کاملRegulation of histone deacetylase 4 (HDAC4) expression by the SP family of transcription factors
Histone deacetylases mediate critical cellular functions but relatively little is known about mechanisms controlling their expression, including expression of HDAC4, a Class II HDAC implicated in the modulation of cellular differentiation and viability. Endogenous HDAC4 mRNA, protein levels and promoter activity were all readily repressed by mithramycin, suggesting regulation by GC-rich DNA seq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 31 18 شماره
صفحات -
تاریخ انتشار 2003